Меню

Формула мощности двигателя электропривода

Расчёт мощности электроприводов основных производственных машин и механизмов, страница 3

Мощность на валу электродвигателя (кВт) ковшового элеватора определяется по формуле

P = (Q ∙ H ∙ k 3) / ( 367 ∙ η Э) , (8.20)

где Q – подача элеватора, т/ч;

H – высота подъёма, м;

k 3 – коэффициент запаса; k 3 = от 1,2 до 1,3;

η Э – КПД элеватора, η Э = от 0,4 до 0,7 (включая кинематическую пару
от двигателя к элеватору).

Подача элеватора определяется по формуле

Q = 3600 ∙ V ∙ k нк ∙ p ∙ υ / a ,(8.21)

где V – объём ковша, м 3 ;

k нк – коэффициент наполнения ковша, k нк = от 0,7 до 0,85;

p – насыпная плотность материала, т/м 3 ;

υ – скорость ленты, м/с;

a – шаг ковшей: a = от 2,5 до 3 h, м;

h – высота ковша, м.

Привод ковшового элеватора, как правило, нерегулируемый, статический момент нагрузки приближённо можно считать постоянным, не зависящим от частоты вращения.

Мощность электропривода (кВт) винтового, цепного конвейеров и шнекового питателя (дозатора) определяется по формуле

P = Q ∙ k 3. ∙ (L ∙ k 1 + H) / ( 367 ∙ η ) , (8.22)

где Q – подача конвейера, т/ч;

L – горизонтальная проекция конвейера, м;

k 3 – коэффициент запаса: k 3 = от 1,1 до 1,3;

H – высота подъёма материала, м;

k 1 — коэффициент сопротивления транспортируемого материала
движению ходовой части или движению материала по желобу
(таблица 8.2).

Мощность двигателя (кВт) пластинчатого транспортёра определяется по формуле

где Q – производительность транспортёра т/ч;

η П – КПД передачи: зависит от типа редуктора (приложение Е).

Коэффициент сопротивления k СП определяется по таблице 8.3.

Таблица 8.2 – Значения коэффициента k 1 для различных типов транспортёров

Значения коэффициента k

цепной транспортёр с роликовыми цепями

цепной транспортёр со скользящими цепями

Средние значения k 1 для винтовых конвейеров (шнеков) при перемещении различных материалов принимаются следующими: для малообразивного материала – 2,5; для абразивного (гравий, песок, цемент) – 3,2; для сильноабразивных и липких материалов (известь, сера, зола и т.д.) – 4,0.

Таблица 8.3 – Значение коэффициента сопротивления k СП

Ширина ленты, мм

При определении мощности двигателя (кВт)роликового транспортёра (рольганга) необходимо сначала определить момент двигателя по формуле

М ДВ = М С + М Б = (G P + G ПОЛ)· μ · r + G ПОЛ· f + G ПОЛ · μ 1· R , (8.24)

где М С – момент статический, Н·м;

М Б – момент буксовки, Н·м;

G P – масса ролика (роликов), Н;

G ПОЛ – масса полезного перемещаемого груза на ролик или рольганг, Н;

μ – коэффициент трения в подшипниках качения: μ = от 0,05 до 0,01

μ 1 – коэффициент трения перемещаемого груза по роликам: μ 1 = 0,3 –
для горячего металла, μ 1 = 0,15 – для холодного металла;

r – радиус шейки вала ролика, м;

R – радиус ролика, м;

f – коэффициент трения качения: f = от 0,01 до 0,05.

После определения момента двигателя, можно произвести расчёт мощности электродвигателя, например, по формуле (5.22).

8.4 Расчёт мощности электроприводов насосов,
вентиляторов и компрессоров

Насосы предназначены для подъёма и перекачки жидкости (воды, нефти, нефтепродуктов, кислот, щелочей и т.п.). Существуют специальные насосы для перекачки жидкостей, содержащих твердые частицы.

В зависимости от температуры перекачиваемых сред различают насосы ”холодные” (до + 200 0 С) и ”горячие”(от + 200 до + 400 0 С).

Привод насосов в основном нерегулируемый. При необходимости регулирование расхода жидкости чаще всего дросселируют задвижкой сечение трубопровода на стороне нагнетания. Однако при этом возникают дополнительные потери энергии, как на задвижке, так и на самом насосе, который в этом случае работает с пониженным КПД; упрощённо считают, что КПД изменяется пропорционально изменению напора в сети.

Читайте также:  Индикатор выходной мощности для регулятора мощности

Более экономичным является регулирование частоты вращения двигателя. Так как требуемый диапазон регулирования не превышает 1 : 1,5, на приводе центробежных насосов целесообразно применение асинхронных двигателей с короткозамкнутым ротором (АД с к.з.р.), регулируемых изменением напряжения сети с помощью дросселей насыщения или тиристорных регуляторов напряжения (при неизменной частоте питания).

Для насосов большой мощности (сотни и тысячи киловатт) наиболее экономично регулирование частоты вращения приводных двигателей по схеме асинхронно-вентильного каскада (двигатель с фазным ротором, питаемый от сети трёхфазного тока через согласующий трансформатор, и ведомый сетью инвертор – тиристорный преобразователь частоты, изменяющий частоту ЭДС в роторе).

Мощность двигателя (кВт) для привода центробежного насоса определяется по формуле

P = (k 3 ∙ Q ∙ H ∙ γ) / 1000 · ( η Н · η П ) ,(8.25)

где Q – подача насоса, м 3 /с;

H – полный напор, м;

γ — удельный вес перекачиваемой жидкости, Н/м 3 (удельный вес воды γ = 9810 Н/м 3 );

k 3 – коэффициент запаса, k 3 = от 1,1 до 1,5 (большие значения соот-
ветствуют меньшей мощности двигателя, до 5 кВт);

Источник



Мощность электродвигателя

Наиболее распространенным типом промышленных силовых установок являются асинхронные электродвигатели. Один из наиболее важных их параметров — мощность электродвигателя, которая в зависимости от модели может варьироваться в широких пределах. От мощности зависит тип энергосистемы, к которой двигатель можно подключить, а также тип и производительность оборудования, с которым он будет сопряжен. По этой причине, не зная мощность электродвигателя, использовать его практически невозможно.

Определение мощности электромотора по размерам сердечка статора

Если технического паспорта нет, можно произвести расчет мощности электродвигателя, исходя из размеров сердечника статора и частоты вращения. Для этого используется формула P 2H = C * D 1 2 / N 1 * 10 -6 кВт. Здесь:
С —постоянная мощность;
D — размер внутреннего диаметра сердечника статора в см;
l — длина статора в см;
N 1 — значение синхронной частоты вращения в об/мин.

Постоянная мощность зависит от частоты вращения и габаритов мотора. Она определяется по величине полюсного деления как зависимость мощности от количества полюсов и размеров полюсного деления τ, если U1 1 / 2р см.
2р здесь — количество полюсов в моторе.

Полученный по этой формуле результат необходимо округлить до наиболее подходящего значения в таблице. Это самый простой и доступный метод, по которому может быть осуществлен расчет мощности электродвигателя.

Подбор требуемой мощности электродвигателя

Правильно подобранная мощность электродвигателя позволяет получить оптимальные технико-экономические показатели электропривода по себестоимости, размерам, экономичности и прочим параметрам. При стабильной нагрузке на электродвигатель определить его мощность можно просто выбором по каталогу, исходя из соотношения Р н ≥ Р нагр. Здесь Р н — это мощность подбираемого двигателя, а Р нагр — предполагаемая мощность нагрузки.

Потребляемая мощность электромотора

Рисунок 1. Шильдик с параметрами на корпусе электродвигателя Работая с электромоторами, нужно знать, как по шильдику определяется потребляемая мощность электродвигателя. Значение мощности Р — это не электрическая мощность мотора, а механическая мощность на валу, обозначенная в кВт.

Чтобы найти потребляемую мощность, нужно обратить внимание на КПД и cosφ двигателя, указанные на шильдике. Причем КПД может быть обозначен как просто буквами КПД, так и буквой η, что и видно на шильдике. Сначала необходимо найти активную мощность, потребляемую двигателем от сети, по формуле Р а = Р / КПД.

Читайте также:  Как можно увеличить мощность электричества

Т. е. в нашем случае (рис. 1) потребляемая электродвигателем из сети активная мощность равна Р а = 0,75кВт/0,75 = 1 кВт. Теперь, чтобы найти полную потребляемую мощность, нужно воспользоваться формулой S = P a/cosφ = 1/0,78 = 1,28 кВт.

Коэффициент мощности электромотора

Коэффициент мощности электродвигателя, или cos φ — это соотношение активной и полной мощности двигателя. Определяется коэффициент мощности электродвигателя по формуле cosφ = P/S. Здесь:
Р — активная мощность в Вт;
S — полная мощность в ВА.

В большинстве случаев активная мощность имеет меньшее значение, чем полная, из-за чего коэффициент составляет меньше единицы. Только тогда, когда нагрузка будет исключительно активной, cosφ станет равен единице.

Чем ниже коэффициент мощности потребителя, тем более мощными должны быть трансформаторы, электрические станции, а также питающие линии электропередач. Кроме того, моторы с низким коэффициентом имеют меньший КПД и большие энергопотери.

Источник

Мощность электродвигателя: формула, правила расчета, виды и классификация электродвигателей

В электромеханике существует много приводов, которые работают с постоянными нагрузками без изменения скорости вращения. Их используют в промышленном и бытовом оборудовании как, например, вентиляторы, компрессоры и другие. Если номинальные характеристики неизвестны, то для расчетов используют формулу мощности электродвигателя. Вычисления параметров особенно актуальны для новых и малоизвестных приводов. Калькуляция выполняется с использованием специальных коэффициентов, а также на основе накопленного опыта работы с подобными механизмами. Данные необходимы для правильной эксплуатации электрических установок.

Что такое электродвигатель?

Электрический двигатель представляет собой устройство, которое преобразует электрическую энергию в механическую. Работа большинства агрегатов зависит от взаимодействия магнитного поля с обмоткой ротора, которая выражается в его вращении. Функционируют они от источников питания постоянного или переменного тока. В качестве питающего элемента может выступать аккумулятор, инвертор или розетка электросети. В некоторых случаях двигатель работает в обратном порядке, то есть преобразует механическую энергию в электрическую. Такие установки находят широкое применение на электростанциях, работающие от потока воздуха или воды.

Электродвигатели классифицируют по типу источника питания, внутренней конструкции, применению и мощности. Также приводы переменного тока могут иметь специальные щетки. Они функционируют от однофазного, двухфазного или трехфазного напряжения, имеют воздушное или жидкостное охлаждение. Формула мощности электродвигателя переменного тока

где P — мощность, U — напряжение, I — сила тока.

Приводы общего назначения со своими размерами и характеристиками находят применение в промышленности. Самые большие двигатели мощностью более 100 Мегаватт используют на силовых установках кораблей, компрессорных и насосных станций. Меньшего размера используют в бытовых приборах, как пылесос или вентилятор.

Конструкция электрического двигателя

Привод включает в себя:

  • Ротор.
  • Статор.
  • Подшипники.
  • Воздушный зазор.
  • Обмотку.
  • Коммутатор.

Ротор — единственная подвижная деталь привода, которая вращается вокруг своей оси. Ток, проходя через проводники, образует индукционное возмущение в обмотке. Формируемое магнитное поле взаимодействует с постоянными магнитами статора, что приводит в движение вал. Их рассчитывают по формуле мощности электродвигателя по току, для которой берется КПД и коэффициент мощности, в том числе все динамические характеристики вала.

Подшипники расположены на валу ротора и способствуют его вращению вокруг своей оси. Внешней частью они крепятся к корпусу двигателя. Вал проходит через них и выходит наружу. Поскольку нагрузка выходит за пределы рабочей зоны подшипников, ее называют нависающей.

Статор является неподвижным элементом электромагнитной цепи двигателя. Может включать в себя обмотку или постоянные магниты. Сердечник статора выполнен из тонких металлических пластин, которые называют пакетом якоря. Он призван снижать потери энергии, что часто происходит с твердыми стержнями.

Читайте также:  Переключателями мощности электроплиты мечта

Воздушный зазор — расстояние между ротором и статором. Эффективным является небольшой промежуток, так как он влияет на низкий коэффициент работы электродвигателя. Ток намагничивания растет с увеличением размера зазора. Поэтому его всегда стараются делать минимальным, но до разумных пределов. Слишком маленькое расстояние приводит к трению и ослаблению фиксирующих элементов.

Обмотка состоит из медной проволоки, собранной в одну катушку. Обычно укладывается вокруг мягкого намагниченного сердечника, состоящего из нескольких слоев металла. Возмущение индукционного поля происходит в момент прохождения тока через провода обмотки. В этот момент установка переходит в режим конфигурации с явными и неявными полюсами. В первом случае магнитное поле установки создает обмотка вокруг полюсного наконечника. Во втором случае, в распределенном поле рассредотачивается слотов полюсного наконечника ротора. Двигатель с экранированными полюсами имеет обмотку, которое сдерживает магнитное возмущение.

Коммутатор используют для переключения входного напряжения. Состоит из контактных колец, расположенных на валу и изолированных друг от друга. Ток якоря подается на щетки контактов ротационного коммутатора, который приводит к изменению полярности и заставляет вращаться ротор от полюса к полюсу. При отсутствии напряжения мотор прекращает крутиться. Современные установки оборудованы дополнительными электронным средствами, которые контролируют процесс вращения.

Принцип действия

По закону Архимеда ток в проводнике создает магнитное поле, в котором действует сила F1. Если из этого проводника изготовить металлическую рамку и поместить ее в поле под углом 90°, то края будут испытывать силы, направленные в противоположную сторону относительно друг друга. Они создают крутящий момент относительно оси, который начинает ее вращать. Витки якоря обеспечивают постоянное кручение. Поле создается электрическими или постоянными магнитами. Первый вариант выполнен в виде обмотки катушки на стальном сердечнике. Таким образом, ток рамки генерирует индукционное поле в обмотке электромагнита, которое порождает электродвижущую силу.

Рассмотрим более подробно работу асинхронных двигателей на примере установок с фазным ротором. Такие машины работают от переменного тока с частотой вращения якоря, не равной пульсации магнитного поля. Поэтому их еще называют индукционными. Ротор приводится в движение за счет взаимодействия электрического тока в катушках с магнитным полем.

Когда во вспомогательной обмотке отсутствует напряжение, устройство находится в состоянии покоя. Как только на контактах статора появляется электрический ток, образуется постоянное в пространстве магнитное поле с пульсацией +Ф и -Ф. Его можно представить в виде следующей формулы:

n пр = n обр = f 1 × 60 ÷ p = n 1

n пр — количество оборотов, которое совершает магнитное поле в прямом направлении, об/мин;

n обр — число оборотов поля в обратном направлении, об/мин;

f 1 — частота пульсации электрического тока, Гц;

p — количество полюсов;

n 1 — общее число оборотов в минуту.

Испытывая пульсации магнитного поля, ротор получает начальное движение. По причине неоднородности воздействия потока, он будет развиваться крутящий момент. По закону индукции, в короткозамкнутой обмотке образуется электродвижущая сила, которая генерирует ток. Его частота пропорциональна скольжению ротора. Благодаря взаимодействию электрического тока с магнитным полем создается крутящий момент вала.

Для расчетов производительности существуют три формулы мощности асинхронного электродвигателя. По сдвигу фаз используют

S = P ÷ cos (alpha), где:

S — полная мощность, измеряемая в Вольт-Амперах.

P — активная мощность, указываемая в Ваттах.

alpha — сдвиг фаз.

Под полной мощностью понимаются реальный показатель, а под активной — расчетный.

Виды электродвигателей

По источнику питания приводы разделяют на работающие от:

  • Постоянного тока.
  • Переменного тока.

Источник

Adblock
detector