Меню

Формула коэффициента мощности синхронного двигателя

Большая Энциклопедия Нефти и Газа

Коэффициент — мощность — синхронный двигатель

Коэффициент мощности синхронного двигателя также зависит от нагрузки, однако он может быть изменен при регулировании тока возбуждения. При меньшем токе возбуждения синхронный двигатель является потребителем реактивной мощности. При дальнейшем увеличении тока возбуждения синхронный двигатель может работать в качестве генератора реактивной мощности. [1]

Коэффициент мощности синхронного двигателя , так же как и у асинхронного двигателя, зависит от нагрузки. [3]

Коэффициент мощности синхронного двигателя зависит от нагрузки на валу двигателя и тока возбуждения. [4]

Коэффициент мощности синхронного двигателя зависит от величины нагрузки на валу двигателя и тока возбуждения. [5]

Как регулируют коэффициент мощности синхронного двигателя , работающего с неизменной нагрузкой. [6]

Как известно, коэффициент мощности синхронных двигателей зависит от режима возбуждения; это может быть пояснено следующим образом. [7]

От чего зависит величина коэффициента мощности синхронного двигателя . [8]

Иначе обстоит дело с коэффициентом мощности синхронного двигателя . Здесь с помощью соответствующего возбуждения коэффициент мощности может регулироваться в широких пределах. В большинстве случаев требуют, конечно, cos ф 1 или даже опережающей величины для того, чтобы улучшить коэффициент мощности установки в целом. Условия для синхронного двигателя настолько благоприятны, что в нем может применяться значительно больший воздушный зазор, чем в асинхронном двигателе. Посмотрим, почему для синхронного двигателя так легко можно установить высокий коэффициент мощности. [10]

Отсюда следует возможность регулирования током возбуждения ротора коэффициента мощности синхронного двигателя . Поясним это с помощью векторных диаграмм синхронного — двигателя, представленных на рис. 11.20. Пусть при данной нагрузке ток возбуждения установлен таким, что угол р0, cospl, ток статора совпадает с напряжением по фазе. [11]

Как будут изменяться ток в обмотке статора и коэффициент мощности синхронного двигателя при увеличении тока возбуждения, есл двигатель работает: а) с недовозбуждением; б) с перевозбуждением. Предполагается, что нагрузка на валу двигателя остается постоянной; Указать неправильный ответ. [12]

Как будут изменяться ток в обмотке статора и коэффициент мощности синхронного двигателя при увеличении тока возбуждения, если двигатель работает: а) с недовозбуждением; б) с перевозбуждением. Предполагается, что нагрузка на валу двигателя остается постоянной. [13]

Коэффициент мощности синхронного двигателя зависит от нагрузки и тока в обмотке возбуждения. Это является одним из ее больших преимуществ по сравнению с асинхронной машиной, которая при всех возможных режимах работает при отстающем токе. [15]

Источник



Синхронный двигатель

Принцип действия синхронного двигателя.

Так как синхронная машина обладает свойством обратимости, конструкция двигателя практически не отличается от конструкции синхронного генератора. Однако взаимодействие элементов теперь отвечает принципу действия двигателя.

Электрическая активная мощность Р потребляется из сети, в результате чего по обмоткам статора протекает ток . Ток , как и в генераторе, создаёт МДС Fст, а она – потоки Фd и Фр,я, наводящие в обмотке статора ЭДС и .

По обмотке ротора протекает ток возбуждения Iв, её МДС Fв создаёт магнитный поток ротора Ф. Вращаясь вместе с ротором, поток Ф в соответствии с законом электромагнитной индукции (ЭМИ) индуцирует в обмотке статора ЭДС , которая направлена против напряжения сети . Сумма ЭДС с учётом падения напряжения на активном сопротивлении обмотки статора уравновешивает напряжение сети . Магнитные потоки Ф, Фd и Фр,я образуют результирующий магнитный поток двигателя Фрез.

Вал двигателя сцеплён с валом рабочей машины РМ (например, со шпинделем металлорежущего станка), потребляющей механическую энергию и создающей момент сопротивления Мс. В результате действия тормозящего момента Мс полюсы ротора отстают от полюсов результирующего поля статора (см. рис. 4.6).

В двигательном режиме результирующий магнитный поток двигателя Фрез является ведущим; вращаясь, он увлекает за собой ротор, создавая вращающий момент М двигателя, преодолевающий тормозной момент Мс механической нагрузки.

Уравнение второго закона Кирхгофа для обмотки статора.

В двигательном режиме синхронная машина потребляет из сети ток , который направлен навстречу ЭДС (рис.4.14,а).

Уравнение, записанное по второму закону Кирхгофа для фазы обмотки статора

показывает, что противо-ЭДС и индуктивное падение напряжения jXсин уравновешивают напряжение сети (предполагается, что =0).

Векторная диаграмма синхронного двигателя.

Векторная диаграмма построена по уравнению (4.4) на рис. 4.14, б. В результате действия механической нагрузки Мс ось магнитного потока ротора Ф отстает на угол от оси результирующего магнитного потока Фрез. Поэтому в двигательном режиме вектор ЭДС отстает по фазе на угол от вектора напряжения сети . Сопоставление векторных диаграмм синхронного двигателя (рис. 4.14,б) и синхронного генератора (см. рис. 4.13) показывает, что угол меняет свой знак. При построении векторной диаграммы двигателя вектор принимается за исходный.

Читайте также:  Мощность холодильника класса квт

Вектор тока отстает по фазе на 90° от вектора jXсин .

Мощность и вращающий момент синхронного двигателя.

Активная мощность, потребляемая трехфазным синхронным двигателем из сети, равна утроенной фазной мощности .

Если пренебречь потерями, которые относительно малы, то активная потребляемая мощность равна электромагнитной мощности, т. е. мощности, передаваемой магнитным полем из статора в ротор , где — угол сдвига фаз между током и ЭДС.

Из треугольников Оса и асb векторной диаграммы на рис. 14.14, б следует, что отрезок , где —масштабный коэффициент. Подставляя значение IcosΨ в выражение для Рэм, получаем для механической мощности на валу двигателя
.

Механический момент на валу двигателя
,

где — угловая скорость ротора; Мтах = — максимальный момент, развиваемый двигателем. При постоянном напряжении сети Uc максимальный момент двигателя зависит только от ЭДС Е, т.е. от тока возбуждения ротора Iв.

Угловая и механическая характеристики.

Зависимость момента синхронной машины от угла нагрузки при Uc = const называется угловой характеристикой машины. Угловая характеристика (рис. 4.15) в соответствии с (4.5) имеет вид синусоиды.

В двигательном режиме угол положительный, поэтому на графике двигательному режиму соответствует положительная полуволна синусоиды. В генераторном режиме угол отрицательный, ему соответствует отрицательная полуволна синусоиды. В диапазоне угла нагрузки -90° Мmax , то угол нагрузки станет больше 90°, рабочая точка перейдёт на неустойчивый участок угловой характеристики. Вращающий момент двигателя М начнёт уменьшаться, ротор тормозиться, двигатель выйдет из синхронизма и может остановиться.

Аналогичные явления происходят и в генераторном режиме. Выход («выпадение») машины из синхронизма – явление недопустимое, оно может привести к тяжёлой тобы в номинальном режиме угол нагрузки и запас по моменту и активной маварии в электрической сети. Поэтому синхронные машины проектируются так, чощности составлял не менее 1,65.

Механической характеристикой синхронного двигателя называется зависимость частоты вращения от момента двигателя. В синхронном двигателе частота вращения ротора постоянна и от нагрузки не зависит. Поэтому механическая характеристика n(M) (рис. 4.18) – прямая, параллельная оси абсцисс.

Регулирование коэффициента мощности синхронного двигателя.

Синхронный двигатель в отличие от асинхронного обладает ценным для электроэнергетики свойством – он позволяет регулировать реактивную мощность, потребляемую из сети. Когда двигатель работает при неизменной механической нагрузке на валу, т.е. Мс= const при Uc = const, то активная мощность Р, потребляемая двигателем из сети, постоянна:

Если в этих условиях изменять ток возбуждения, ЭДС обмоток статора и изменяются так, что активная составляющая тока Icosφ и составляющая ЭДС остаются неизменными (рис. 14.17).

При изменении тока возбуждения вектор скользит вдоль прямой ab, изменяются положение вектора jXсин и угол φ сдвига фаз между током и напряжением сети , а, вследствие того, что , конец вектора тока скользит по прямой cd.

Когда ток возбуждения двигателя мал (недовозбуждение), = , ток отстаёт по фазе от и двигатель потребляет реактивную мощность. При некотором, относительно большом токе возбуждения = и ток является чисто активным.

Наоборот, при перевозбуждении и вектор тока опережает по фазе вектор напряжения , , ток, потребляемый двигателем из сети, имеет ёмкостную составляющую. Последнее весьма ценно, поскольку ёмкостный ток компенсирует индуктивные токи, потребляемые из сети другими потребителями (асинхронными двигателями, различного рода катушками и т.п.), и тем самым улучшается cosφ всей сети. Обычно синхронные двигатели работают с перевозбуждением при .

U – образные характеристики.

Зависимости I(Iв) при Uc = const и Р= const называются U – образными характеристиками. На рис. 4.18 изображены три такие характеристики для случаев Р=0 (режим холостого хода), некоторой мощности P1>0 P2> P1. Минимум тока на характеристиках соответствует активному току, потребляемому двигателем , левые ветви – перевозбуждённому двигателю и ёмкостному току.

При уменьшении тока возбуждения Iв уменьшается ЭДС Е и угол увеличивается (рис.4.17).

Штриховая кривая АВ на рис. 4.18 представляет собой границу устойчивости, на которой =90°.

Наиболее экономичным для самого синхронного двигателя является режим работы с , так как двигатель развивает заданную механическую мощность при наименьшем, чисто активном токе статора.

Рис. 4.17 и 4.18

Читайте также:  Мощность одного светодиода smd 5050

Обычно в эксплуатации синхронный двигатель перевозбуждают с целью улучшения cosφ сети. Режим перевозбуждения выгоден и тем, что уменьшается угол и возрастает перегрузочная способность двигателя. Вместе с этим следует учитывать, что обмотки статора двигателя рассчитаны на определённый ток с точки зрения нагрева. Поэтому, чем больше загрузка двигателя активным током Ia (определяющим механическую мощность и момент на валу), тем меньше возможности использования двигателя в качестве генератора реактивной (ёмкостной) мощности за счёт реактивной составляющей тока Ip.

Синхронные компенсаторы.

Синхронные компенсаторы – это синхронные машины, специально предназначенные для улучшения коэффициента мощности (cosφ) электрической сети. Они работают без механической нагрузки на валу (ток Ia мал) в перевозбуждённом режиме (правая ветвь U – образной характеристики Р=0 на рис. 4.20). Поскольку синхронные компенсаторы работают вхолостую и загружены только реактивным током Ip, они имеют облегчённую механическую конструкцию и, следовательно, меньшие размеры и массу.

Пуск синхронного двигателя.

Пуск синхронного двигателя сопряжён с трудностями. Если статорную обмотку включить в трёхфазную сеть, а обмотку возбуждения питать от источника постоянного напряжения Uв (рис. 4.19), то ротор не сдвинется с места – из-за инерционности ротора вращающееся поле статора не успевает сцепиться с неподвижным полем ротора.

Распространение получил так называемый асинхронный пуск синхронного двигателя. Для осуществления асинхронного пуска ротор синхронного двигателя снабжается специальной пусковой короткозамкнутой обмоткой из медных или алюминиевых стержней типа беличьей клетки асинхронного короткозамкнутого двигателя. Пуск двигателя осуществляют следующим образом (рис. 4.19).

Вначале обмотка возбуждения синхронного двигателя замыкается на пусковой реостат Rп, сопротивление которого в 8 – 10 раз больше, чем сопротивление обмотки возбуждения (если оставить обмотку возбуждения разомкнутой, то в ней при пуске вращающимся полем статора будет наводиться значительная ЭДС, опасная для изоляции).

При включении обмотки статора на трёхфазное напряжение двигатель за счёт короткозамкнутой обмотки начинает работать как асинхронный. Когда частота вращения ротора двигателя достигает примерно 95% синхронной частоты вращения поля статора n, пусковой реостат Rп отключают, а обмотку возбуждения ротора включают на постоянное напряжение Uв.

Так как теперь частота вращения поля статора отличается незначительно от частоты поля вращающегося ротора, полюсы полей статора и ротора вступают во взаимодействие, двигатель втягивается в синхронизм и начинает работать как синхронный.

В рабочем, т.е. в синхронном, режиме токи в пусковой короткозамкнутой обмотке не возникают и она в работе машины не участвует. Однако при кратковременных толчках механической нагрузки на валу в пусковой обмотке токи наводятся и создают момент, демпфирующий колебания ротора.

Преимущества, недостатки и применение синхронных двигателей.

Преимущество синхронных двигателей перед асинхронными состоит в том, что благодаря возбуждению от независимого источника постоянного тока они работают при высоком коэффициенте мощности (до ) и даже с опережающим током. Это обстоятельство позволяет увеличивать cosφ всей сети. Кроме того, работа двигателя с высоким cosφ обеспечивает уменьшение потребляемого тока и потерь в синхронном двигателе по сравнению с асинхронным той же мощности и, следовательно, более высокий КПД.

Наконец, вращающий момент синхронного двигателя пропорционален напряжению сети Uc . Поэтому при понижении напряжения в сети синхронный двигатель сохраняет большую перегрузочную способность, чем асинхронный, и, следовательно, обладает большей надёжностью.

Вместе с тем синхронный двигатель сложнее по конструкции, чем асинхронный той же мощности, и поэтому дороже. Синхронные двигатели должны иметь источник постоянного тока (специальный возбудитель или выпрямитель), пуск у них протекает сложнее, чем у асинхронных. Частотное регулирование является единственным способом регулирования угловой частоты вращения ротора синхронного двигателя.

Тем не менее, преимущества синхронных двигателей настолько велики, что при мощностях свыше 100 кВт их целесообразно применять всюду, где не требуется часто останавливать и пускать механизмы или регулировать их скорость. В настоящее время они применяются для привода преобразовательных агрегатов, компрессоров, насосов, вентиляторов, мельниц, дробилок, нерегулируемых прокатных станов и т.п.

Отечественная промышленность выпускает трёхфазные синхронные двигатели мощностью от 20 кВт до нескольких десятков тысяч киловатт при частотах вращения от 100 до 1000 об/мин в явнополюсном исполнении и при 1500, 3000 об/мин – в неявнополюсном, с различным исполнением по способу защиты от внешних воздействий (открытое, защищённое, закрытое и т.д.), с различным рабочим положением вала (горизонтальные, вертикальные) и с различными системами возбуждения: от генератора постоянного тока, расположенного на одном валу с двигателем, от тиристорных выпрямителей и т.д.

Читайте также:  Мощность относительно сечения кабеля

Источник

Синхронные двигатели

5. СИНХРОННЫЕ ДВИГАТЕЛИ

5.1. Энергетическая и векторная диаграммы

синхронного двигателя

При создании тормозного механического момента М2 на валу синхронная машина, включенная в сеть, переходит в двигательный режим (см. параграф 6.2). За счет потребления активной мощности в машине образуется вращающий электромагнитный момент М и двигатель сохраняет постоянную частоту вращения ротора n. Активная составляющая тока якоря Ia, угол нагрузки θ и момент М меняют знак по сравнению с генератoрным режимом.

Преобразование энергии в двигателе можно иллюстрировать энергетической диаграммой (рис. 5.1).

Потребляемая из сети активная электрическая мощность

где m – число фаз; U и I – фазные напряжение и ток якоря; cosφ – коэффициент мощности.

Часть этой мощности рf расходуется на возбуждение машины статическими системами возбуждения, а также рассеивается в виде электрических потерь рЭ в обмотке якоря и магнитных потерь рМ в магнитопроводе якоря.

Электромагнитная мощность

передается через зазор вращающимся магнитным полем на ротор в виде полной механической мощности РМЕХ = Р. Часть этой мощности компенсирует механические рМЕХ и добавочные рД потери мощности.

Полезная механическая мощность на валу двигателя

или подставляя выражение (5.2) электромагнитной мощности в формулу (5.3), получим

где Σр = рf + рЭ + рМ + рМЕХ + рд — полные потери мощности в машине, причина возникновения и место локализации отдельных видов потерь объясняется в пункте 3.6.6.

При бесщеточном или прямом электромашинном возбуждении потери на возбуждение рf показывают в правой части. энергетической диаграммы на стороне полезной механической мощности Р2

Диаграммы напряжений и МДС двигателя можно чертить по уравнениям (3.30)–(3.36), (3.40)–(3.50), соответствующим генераторному режиму. Угол φ между векторами напряжения машины U и тока якоря İ превышает p/2 (рис. 5.4, в), коэффициент мощности сosφ отрицателен, что не всегда удобно. Поэтому коэффициент мощности в двигательном режиме характеризуют углом φ между векторами напряжения сети UC и тока якоря İ.

Уравнения напряжения синхронных двигателей получают, заменив в уравнениях напряжения генератора вектор напряжения машины U равным и противоположно направленным вектором напряжения сети UC = – U. Выполнив такую замену, получим уравнения напряжения ненасыщенных неявнополюсного:

и явнополюсного двигателей:

Как и для генератора, уравнение (5.7) можно представить в виде:

Уравнения МДС справедливы и для двигателя.

Диаграмма перевозбужденного явнополюсного двигателя без учета насыщения магнитной цепи изображена на рис. 5.2.

Ток якоря İ опережает напряжения сети UС, поэтому говорят, что перевозбужденный двигатель работает с опережающим сosφ. При этом двигатель по отношению к сети подобен емкостной нагрузке и отдает реактивную мощность в сеть.

Ток якоря İ недовозбужденного двигателя отстает от напряжения сети UС и недовозбужденный двигатель работает с отстающим сosφ. Машина подобна индуктивности, включенной в сеть, и потребляет из сети реактивную мощность.

5.2. Угловые, Uобразные и рабочие характеристики

синхронных двигателей

Уравнения угловых характеристик активной и реактивной мощностей синхронного генератора справедливы и для двигательного режима при подстановке отрицательного угла нагрузки θ.

Электромагнитные мощность Р и момент М изменяют свой знак, так как в реальной машине изменяется направление активной мощности при переходе из генераторного режима в двигательный.

Зависимости Р, М = f (θ) явнополюснго двигателя при постоянных токе возбуждения I f, напряжении UC и частоте fC сети изображены на рис. 5.3. Значения номинального θН и максимального θm углов нагрузки двигателей такие же, как у генераторов. Двигатель статически устойчив при углах нагрузки θm 0 (рис. 5.9, а). Вследствие этого вместо электромагнитных сил FЭМ притяжения намагниченных областей статора и ротора при недовозбуждении (рис. 5.9, а) возникают силы отталкивания (рис. 5.9, б).

Силы отталкивания FЭМ уравновешены по окружности машины и не создают вращающего момента только при совпадении продольной оси d с осью результирующего потока Фr, то есть при угле θ = 0 (рис. 5.9, б). Малейшее отклонение оси полюсов d от оси потока Фr приводит к изменению направления сил отталкивания (рис. 5.9, в)

Тангенциальная составляющая этих сил при θ ≠ 0 не уравновешена по окружности машины и образует электромагнитный момент, который вызывает дальнейшее изменение угла нагрузки на 180°. Машина возвращается в режим недовозбуждения (рис. 5.9, а) и потребляемая реактивная мощность снижается.

Как и при отсутствии возбуждения (I f = 0) синхронный режим может быть обеспечен только мощностью и моментом явнополюсности. При отрицательном возбуждении (I f

Источник

Adblock
detector