Формула для определения мощности одной фазы трехфазного трехстержневого трансформатора

Связь тока, мощности, напряжения и uk% силового трансформатора

Силовой трансформатор представляет собой сложную систему, которая состоит из большого числа других сложных систем. И для описания трансформатора придумали определенные параметры, которые разнятся от машины к машине и служат для классификации и упорядочивания.

Разберем основные параметры, которые могут пригодиться при расчетах, связанных с силовыми трансформаторами. Данные параметры должны быть указаны в технических условиях или стандартах на тип или группу трансформаторов (требование ГОСТ 11677-85). Сами определения этих параметров приведены в ГОСТ 16110.

Номинальная мощность трансформатора — указанное на паспортной табличке трансформатора значение полной мощности на основном ответвлении, которое гарантируется производителем при установке в номинальном месте, охлаждающей среды и при работе при номинальной частоте и напряжении обмотки.

Числовое значение мощности в кВА изначально выбирается из ряда по ГОСТ 9680-77. На изображении ниже приведен этот ряд.

Значения в скобках принимаются для экспортных или специальных трансформаторов.

Если по своим характеристикам оборудование может работать при разных значениях мощностей (например, при различных системах охлаждения), то за номинальное значение мощности принимается наибольшее из них.

К силовым трансформаторам относятся:

  • трехфазные и многофазные мощностью более 6,3 кВА
  • однофазные — более 5 кВА

Номинальное напряжение обмотки — напряжение между зажимами трансформатора, указанное на паспортной табличке, на холостом ходу.

Номинальный ток обмотки — ток, определяемый мощностью, напряжением обмотки и множителем, учитывающим число фаз. То есть если трансформатор двухобмоточный, то мы будем иметь ток с низкой стороны и ток с высокой стороны. Или же ток, приведенный к низкой или высокой стороне.

Напряжение короткого замыкания — дадим два определения.

Приведенное к расчетной температуре линейное напряжение, которое нужно подвести при номинальной частоте к линейным зажимам одной из обмоток пары, чтобы в этой обмотке установился ток, соответствующий меньшей из номинальных мощностей обмоток пары при замкнутой накоротко второй обмотке пары и остальных основных обмотках, не замкнутых на внешние цепи

Напряжение короткого замыкания uk — это напряжение, при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней проходит ток, равный номинальному

Определились с основными терминами, далее разберем как посчитать ток и сопротивление трансформатора на примере:

ТМ-750/10 с номинальными напряжениями 6 кВ и 0,4 кВ. Ток с высокой стороны будет 72,2 А, напряжение короткого замыкания — 5,4%. Для определения тока воспользуемся следующим выражением:

Так что, если недобрали данных для расчетов, всегда можно досчитать. Но это рассмотрен случай двухобмоточного Т.

Чтобы определить сопротивление двухобмоточного трансформатора в именованных единицах (Ом), например, для расчета тока короткого замыкания, воспользуемся следующими выражениями:

  • x — искомое сопротивление в именованных единицах, Ом
  • xT% — относительное сопротивление, определяемое через uk% (в случае двухобмоточных эти числа равны), отн.ед.
  • Uб — базисное напряжение, относительно которого мы ведем наш расчет (более подробно будет рассмотрено в статье про расчет токов КЗ), кВ
  • Sном — номинальная мощность, МВА

В формуле выше важно следить за единицами измерения, не спутать вольты и киловольты, мегавольтамперы с киловольтамперами. Будьте начеку.

Формулы для расчета относительных сопротивлений обмоток (xT%)

В двухобмоточном трансформаторе все просто и uk=xt.

Трехобмоточный и автотрансформаторы

В данном случае схема эквивалентируется в три сопротивления (по секрету, одно из них частенько бывает равно нулю, что упрощает дальнейшее сворачивание).

Трехфазный у которого НН расщепленная

Частенько в схемах ТЭЦ встречаются данные трансформаторы с двумя ногами.

В данном случае всё зависит от исходных данных. Если Uk дано только для в-н, то считаем по верхней формуле, если для в-н и н1-н2, то нижней. Схема замещения представляет собой звезду.

Группа двухобмоточных однофазных трансформаторов с обмоткой низшего напряжения, разделенной на две или на три ветви

Хоть внешне и похоже на описанные выше, и схемы замещения подобны, однако, формулы будут немного разные.

Вы находитесь на странице, адап­ти­ро­ван­ной для быстрой загрузки

Источник

РАСЧЕТ ОСНОВНЫХ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН ТРАНСФОРМАТОРОВ И АВТОТРАНСФОРМАТОРОВ

Расчет трансформатора начинается с определения основных электрических величин — мощности на одну фазу и стержень, номинальных токов на стороне ВН и НН, фазных токов и напряжений.

Мощность одной фазы трансформатора, кВ·А,

мощность на одном стержне

где с — число активных (несущих обмотки) стержней трансформатора; S — номинальная мощность трансформатора, кВ·А.

Для трехобмоточного трансформатора под мощностью S следует понимать наибольшее из трех значений номинальной мощности для обмоток ВН, СН и НН.

Номинальный (линейный) ток обмотки ВН, СН и НН трехфазного трансформатора, А,

I = S·10 3 /( U) (3.3)

где S — мощность трансформатора, кВ·А; для трехобмоточного трансформатора S — мощность соответствующей обмотки ВН, СН или НН; U — номинальное линейное напряжение соответствующей обмотки, В.

Для расщепленных обмоток S — мощность соответствующей части обмотки. В трансформаторах классов напряжения 35—500 кВ, отвечающих требованиям современных стандартов, расщепление обмотки производится на две части, равные по мощности.

Номинальный ток однофазного трансформатора, А,

Фазный ток обмотки одного стержня трехфазного трансформатора, А:

при соединении обмоток в звезду или зигзаг

при соединении обмоток в треугольник

Iф = I / (3.6)

где номинальный ток I определяется по (3.3).

Фазное напряжение трехфазного трансформатора, В:

при соединении в звезду или зигзаг

Uф = U/ (3.7)

здесь U — номинальное линейное напряжение соответствующей обмотки, В.

при соединении в треугольник

При соединении в зигзаг результирующее фазное напряжение образуется геометрическим сложением напряжений двух частей обмотки, находящихся на разных стержнях (рис. 3.1). В силовых трансформаторах общего назначения обе части обмотки на каждом стержне имеют равное число витков. В этом случае фазное напряжение образуется суммой равных напряжений двух частей обмотки, сдвинутых на 60°. Напряжение одной части обмотки фазы при этом может быть получено из формулы

U’ = Uф / (2 cos30 o ) = Uф /

Общее число витков такой обмотки на одном стержне будет определяться не Uф, как при соединении в звезду, а 2Uф / , т, е. увеличится в 1,155 раза.

Рис. 3.1. Схема соединения в зигзаг:

а — общая схема; б — диаграмма фазных и линейных напряжений при разделении фазных обмоток на две равные части; в — то же, когда обмотки делятся на неравные части

При соединении в зигзаг обмотка фазы может разделяться на две неравные части. В этом случае может быть получен поворот системы фазных и линейных напряжений схемы на любой угол в зависимости от того, в каком отношении находятся числа витков двух частей обмотки фазы (рис. 3.1,в ). При заданном угле β обмотка каждой фазы должна быть разделена в отношении

ω1/( ω1+ ω2) = 2tgβ/(tgβ + ).

Фазный ток и напряжение однофазного трансформатора равны его номинальным току и напряжению. Ток и напряжение обмотки одного стержня в однофазном трансформаторе зависят от соединения обмоток стержней — последовательного или параллельного. При последовательном соединении обмоток двух стержней ток обмотки одного стержня равен номинальному току, а напряжение — половине номинального напряжения. При параллельном соединении обмоток двух стержней ток обмотки одного стержня равен половине номинального тока, а напряжение — номинальному напряжению. В обоих случаях предполагается, что числа витков обмоток обоих стержней равны.

Для определения изоляционных промежутков между обмотками и другими токоведущими частями и заземленными деталями трансформатора существенное значение имеют испытательные напряжения, при которых проверяется электрическая прочность* изоляции трансформатора. Эти испытательные напряжения определяются по табл. 4.1 для каждой обмотки трансформатора по ее классу напряжения.

Потери короткого замыкания, указанные в задании, дают возможность определить активную составляющую напряжения короткого замыкания, %:

uа = 100 = (3.9)

Реактивная составляющая при заданном ик определяется по формуле

uр = (3.10)

Расчет основных электрических величин для автотрансформатора имеет некоторые особенности. Типовая или расчетная мощность однофазного автотрансформатора

может быть определена по заданным проходной мощности Sпрох и номинальным напряжениям U и U’:

Рис. 3.2. Схема соединения обмоток однофазного двухобмоточного повышающего автотрансформатора

Рис. 3.2. Схема соединения обмоток однофазного двухобмоточного понижающего автотрансформатора

для повышающего автотрансформатора (рис. 3.2)

Sтип = Sпрох = kв Sпрох (3.12)

для понижающего автотрансформатора (рис. 3.3)

Sтип = Sпрох = kв Sпрох

Коэффициент kв=(U’-U)/U’ для повышающего или kв=(U-U’)/U для понижающего автотрансформатора, показывающий, какую долю составляют типовая (расчетная) мощность Sтип от проходной мощности Sпрох, иногда называют коэффициентом выгодности автотрансформатора (

для повышающего однофазного автотрансформатора (рис. 3.2)

для понижающего однофазного автотрансформатора (рис. 3.3)

Для трехфазного автотрансформатора с соединением обмоток в звезду токи обмоток находятся также по этим формулам. В том и другом случае I и I’ — номинальные линейные токи автотрансформаторов, найденные по (3.3) и (3.4).

Напряжения отдельных обмоток U1 и U2, В, для однофазного автотрансформатора:

повышающего (рис. 3.2)

понижающего (рис. 3.3)

Для трехфазного автотрансформатора с соединением обмоток в звезду под U и U’ в этих формулах следует понимать фазные напряжения автотрансформатора:

где Uл и U’л — номинальные линейные напряжения автотрансформатора по заданию.

Напряжение короткого замыкания ик для автотрансформатора обычно задается как сетевое ик,с т. е. относительно большего из двух сетевых напряжений U и U’. При расчете основных размеров автотрансформатора необходимо знать расчетное напряжение ик,p т. е. отнесенное к напряжению одной из обмоток U1 или U2. Для понижающего и повышающего автотрансформатора ик,р может быть найдено по формуле

После определения расчетной мощности, токов и напряжений обмоток и расчетного напряжения короткого замыкания между обмотками ВН и СН расчет автотрансформатора производится по этим данным так же, как и обычного трансформатора.

Пример. Рассчитать основные электрические величины для понижающего трехфазного трехобмоточного автотрансформатора с автотрансформаторной связью обмоток ВН и СН и трансформаторной связью обмоток ВН и НН, СН и НН по рис. 2.9, б.

Проходная мощность Sпрох = 100000 кВ·А, мощности обмоток ВН и СН при автотрансформаторной связи Sпрох; мощность обмотки НН 0,5Sпрох. Номинальное напряжение: ВН 231 кВ; СН 121 кВ±8·1,5%; НН 38,5 кВ. Схемы соединения обмоток: ВН и СН — У, НН — Д. Напряжения короткого замыкания ик,с, приведенные к проходной мощности и отнесенные к сетевым напряжениям: ВН—СН 11 %; ВН—НН 31 %; СН—НН 19%.

Типовая мощность Sтип = kвSпрох=0,476.100000=47 600 кВ·А; мощность обмотки НН SНН=50000 кВ·А. Расчетная мощность обмотки одного стержня для обмотки ВН и СН

S’ = Sтип/c = 47600/3 = 15867 кВ·А;

S =Sпрох/c = 0,5·100000 /3 = 16667 кВ·А.

I = Sпрох·10 3 /( U) = 100000·10 3 /( ·231000) = 250 А;

I’ = Sпрох·10 3 /( U’) = 100000·10 3 /( ·121000) = 480 А;

I2 = I = 250А; I1 = I’- I=480-250 = 230 А;

U1= U’=69700 В; U2=U-U’=133000-69700 = 63300 В;

Расчетное напряжение короткого замыкания между обмотками ВН и СН

Напряжения короткого замыкания между обмотками ВН и НН, СН и НН, имеющими трансформаторную связь, не пересчитываются, но при реально возможной нагрузке на обмотках ВН—НН или СН—НН, равной 0,5, Sпрох будут равны: для ВН — НН 0,5·31 = 15,5% и для СН— НН 0,5·19 = 9,5%.

Дата добавления: 2015-01-02 ; просмотров: 9896 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Расчет основных электрических величин и главной изоляции обмоток трансформатора

Расчет трансформатора начинается с определения основных электрических величин: мощности на одну фазу и стержень; номинальных токов на стороне ВН и НН; фазных токов и напряжений.

¨ Мощность одной фазы трансформатора, кВ*А,

= ,
где S – мощность трансформатора; m – число фаз.

¨ Мощность на одном стержне, кВ*А,

S` = ,
где C– число активных (несущих обмотки) стержней.
Обычно для 3-фазных трансформаторов число фаз равно числу стержней.

¨ Номинальный (линейный) ток, А,

на стороне НН I1 = ;
на стороне ВН I2 = ,
где S – мощность трансформатора, кВ*А; U1и U2 – соответствующие значения напряжений обмоток, кВ.
Для однофазного трансформатора номинальный ток, А, определяется по формуле
I = .
При определении токов мощность подставляется в киловатт-амперах (кВ*А), а напряжение в киловольтах (кВ).

¨ Фазные токи, А, трехфазных трансформаторов

при соединении в звезду или зигзаг:
Iф = Iл;
при соединении обмотки в треугольник
Iф = ,
где IЛ – номинальный линейный ток трансформатора.
Схема соединения и группа обмоток обычно задается.

¨ Фазные напряжения, В, трансформатора

при соединении обмотки в звезду или зигзаг:
= ,
при соединении обмотки в треугольник:
Uф = Uл,
где Uл – номинальное линейное напряжение соответствующих обмоток.

¨ Испытательное напряжение трансформатора

Необходимо для определения основных изоляционных промежутков, между обмотками и другими токоведущими деталями.
Это напряжение, при котором проводится испытание трансформатора, а именно электрическая прочность изоляции.
Испытательное напряжение для каждой обмотки трансформатора определяется по табл. 1 или 2 в зависимости от класса напряжения соответствующей обмотки.

Испытательные напряжения промышленной частоты (50 Гц) для масляных силовых трансформаторов (ГОСТ 1516.1-76)

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector