Меню

Формула действующего напряжения синусоидального тока

ДЕЙСТВУЮЩЕЕ И СРЕДНЕЕ ЗНАЧЕНИЯ СИНУСОИДАЛЬНЫХ ТОКА, ЭДС И НАПРЯЖЕНИЯ

date image2015-01-22
views image3596

facebook icon vkontakte icon twitter icon odnoklasniki icon

Для установления эквивалентности переменного тока в отношении энергии и мощности, общности методов расчета, а также сокращения вычислительной работы изменяющиеся непрерывно во времени токи. ЭДС и напряжения заменяют эквивалентными неизменными во времени величинами. Действующим или эквивалентным значением называется такой неизменный во времени ток, при котором выделяется в резистивном элементе с активным сопротивлением r за период то же количество энергии, что и при действительном изменяющемся синусоидально токе.

Энергия за период, выделяющаяся в резистивном элементе при синусоидальном токе,

При неизменном во времени токе энергия

Приравняв правые части

получим действующее значение тока

Таким образом, действующее значение тока меньше амплитудного в √2 раз.

Аналогично определяют действующие значения ЭДС и напряжения:

Е = Em / , U = Um / .

Действующему значению тока пропорциональна сила, действующая на ротор двигателя переменного тока, подвижную часть измерительного прибора и т. д. Когда говорят о значениях напряжения, ЭДС и тока в цепях переменного тока, имеют в виду их действующие значения. Шкалы измерительных приборов переменного тока отградуированы соответственно в действующих значениях тока и напряжения. Например, если прибор показывает 10 А, то это значит, что амплитуда тока

Im = I = 1,41 • 10 = 14,1 A.

и мгновенное значение тока

i = Im sin (ωt + ψ) = 14,1 sin (ωt + ψ).

При анализе и расчет выпрямительных устройств пользуются средними значениями тока, ЭДС и напряжения, под которыми понимают среднее арифметическое значение соответствующей величины за полпериода (среднее значение за период, как известно, равно нулю):

Аналогично можно найти средние значения тока и напряжения:

Отношение действующего значения к среднему значению какой-либо периодически изменяющейся величины называется коэффициентом формы кривой. Для синусоидального тока

Источник



Переменный электрический ток

Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC — Direct Current — постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Читайте также:  Для чего нужны указатели высокого напряжения

Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)

f = 1 /T

Циклическая частота ω — угловая частота, равная количеству периодов за секунд.

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t); u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = I ampsin(ωt); u = U ampsin(ωt)

С учётом начальной фазы:

i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)

Здесь I amp и U amp — амплитудные значения тока и напряжения.

Амплитудное значение — максимальное по модулю мгновенное значение за период.

I amp = max|i(t)|; U amp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой I amp (U amp) среднеквадратичное значение определится из расчёта:

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1

Замечания и предложения принимаются и приветствуются!

Источник

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают I m.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

Читайте также:  Стабилизатор напряжения для домашнего выбрать

Угловая частота (единица угловой частоты — рад/с или с -1 )

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j ( t)).

Среднее и действующее значения синусоидально изменяющейся величины.

Под средним значением синусоидально изменяющей­ся величины понимают ее среднее значение за полпериода. Среднее значение тока

т. е. среднее значение синусоидального тока составляет 2/ = 0,638 от амплитудного. Аналогично,

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично

Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Большинство измерительных приборов показывают действующее значение измеряемой величины.

Коэффициент амплитуды к a — это отношение амплитуды периодически изменяющейся функции к ее действующему значению. Для синусоидального тока

Под коэффициентом формы к ф —понимают отношение действующего значения периодически изменяющейся функции к ее среднему за полпе­риода значению. Для синусоидального тока

Сложение и вычитание синусоидальных функций времени на комплексной плоскости. Векторная диаграмма.

Положим, что необходимо сложить два тока ( i 1 и i 2) одинаковой частоты. Сумма их дает некоторый ток той же частоты:

Требуется найти амплитуду I т и начальную фазу ψ тока i. С этой целью ток i 1 изобразим на комплексной плоскости (рис. 3.4) вектором = I 1те j ψ1 , а ток i 2 — вектором = I 2те j ψ2 . Геометрическая сумма векторов и I 2т даст комплексную амплитуду суммарного тока I т = I т e — jψ 2 . Амплитуда тока I т определяется длиной суммарного вектора, а начальная фаза ψ — углом, образованным этим вектором и осью + 1.

Для определения разности двух токов (ЭДС, напряжений) следует на комплексной плоскости произвести не сложение, а вычитание соответствующих векторов.

Обратим внимание на то, что если бы векторы , ,I т стали вращаться вокруг начала координат с угловой скоростью ω, то взаимное расположение векторов относительно друг друга осталось бы без изменений.

Векторной диаграммойназывают совокупность векторов на комплексной плоскости, изображающих синусоидально изменяющиеся функции времени одной и той же частоты и построенных с соблюдением правильной ориентации их относительно друг друга по фазе. Пример на рис. 3.4.

Протекание синусоидальных токов по участкам электрической цепи сопровождается потреблением энергии от источников. Скорость поступления энергии характеризуется мощностью. Под мгновенным значением мощности, или под мгновенной мощностью, понимают произведение мгновенного значения напряжения и на участке цепи на мгновенное значение тока i, протекающего по этому участку:

где р — функция времени.

Перед тем как приступить к изучению основ расчета сложных цепей синусоидального тока, рассмотрим соотношения между токами и напряжениями в простейших цепях, векторные диаграммы для них и кривые мгновенных значений различных величин. Элементами реальных цепей синусоидального тока являются резисторы, индуктивные катушки и конденсаторы. Протеканию синусоидального тока оказывают сопротивление резистивные элементы (резисторы) — в них выделяется энергия в виде теплоты — и реактивные элементы (индуктивные катушки и конденсаторы) — они то запасают энергию в магнитном (электрическом) поле, то отдают ее. Рассмотрим поведение этих элементов.

Читайте также:  Как подсоединить трансформатор напряжения

Под комплексной проводимостью Y понимают величину, обратную комплексному сопротивлению Z:

Единица комплексной проводимости — См (Ом -1 ). Действительную часть ее обозначают через g, мнимую — через b.

Если X положительно, то и b положительно. При X отрицательном b также отрицательно.

При использовании комплексной проводимости закон Ома (3.35) запи-сывают так:

где I a — активная составляющая тока; I r — реактивная составляющая ; тока; U — напряжение на участке цепи, сопротивление которого равно Z.

Определение дуальной цепи.

Две электрические цепи называют дуальными, если закон изменения контурных токов в одной из них подобен закону изменения узловых потенциалов в другой. Исходную и дуальную ей схемы называют взаимно обратными.

В качестве простейшего примера на рис. 3.32изображены две дуальные цепи.

Схема на рис. 3.32, а состоит из источника ЭДС Е и последовательно с ним включенных активного, индуктивного и емкостного элементов ( R, L, С). Схема на рис. 3.32 б состоит из источника тока J 3 и трех параллельных ветвей. Первая ветвь содержит активную проводимость g э вторая — емкость С э, третья — индуктивность Z э.

Для того чтобы показать, какого рода соответствие имеет место в дуальных цепях, составим для схемы на рис. 3.32, а уравнение по методу контурных токов:

а для схемы на рис. 3.32 б — по методу узловых потенциалов, обозначив потенциал точки а через φ а, положив равным нулю потенциал второго узла:

Если параметры g э, L э. С э, схемы (рис. 3.32 б) согласовать с параметрами R, L, С схемы (рис. 3.32 а) таким образом, что

где к — некоторое произвольное число (масштабный множитель преоб-разования), Ом 2 , то

С учетом равенства (3.88) перепишем уравнение (3.86) следующим об-разом:

Из сопоставления уравнений (3.85) и (3.89) следует, что если ток J э источника тока в схеме на рис. 3.32 б изменяется с той же угловой частотой, что и ЭДС Е в схеме на рис. 3.32 а, и численно равен E , а параметры обеих схем согласованы в соответствии с уравнением (3.87), то при к = 1Ом 2 . закон изменения во времени потенциала φ 0 в схеме на рис. 3.32 б совпадет с законом изменения во времени тока I в схеме на рис. 3.32 а.

Если свойства какой-либо из схем изучены, то они полностью могут быть перенесены на дуальную ей схему.

Между входным сопротивлением Z исх исходного двухполюсника и входной проводимостью Y дуал дуального ему двухполюсника существует соотношение Z исх =k Y дуал

Из (3.88) получаем соотношение между частотной характеристикой чисто реактивного исходного двухполюсника Х исх(ω) и частотной характеристикой дуального ему тоже чисто реактивного двухполюсника b дуал (ω). Каждому элементу исходной схемы (схемы с источниками ЭДС E и параметрами R, L, С) отвечает свой элемент эквивалентной дуальной схемы (схемы с источниками тока J 3 и параметрами g э, С э, L э).

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают I m.

Период Т — это время, за которое совершается одно полное колебание.

Источник

Adblock
detector