Меню

Физические приборы для измерения мощности

Измеритель мощности

Ваттме́тр (ватт + гр. μετρεω измеряю) — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала.

Содержание

Классификация

По назначению и диапазону частот ваттметры можно разделить на три категории — низкочастотные (и постоянного тока), радиочастотные и оптические. Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа фукционального преобразования измерительной информации и ее вывода оператору ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

Ваттметры низкой частоты и постоянного тока

Аналоговый ваттметр

НЧ-ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры — измерители реактивной мощности. Цифровые приборы обычно совмещают возможность измерения активной и реактивной мощности.

  • Аналоговые НЧ-ваттметры электродинамческой или ферродинамической системы имеют в измерительном механизме две катушки, одна из которых подключается последовательно нагрузке, другая параллельно. Взаимодействие магнитных полей катушек создает вращающий момент, отклоняющий стрелку прибора, пропорциональный произведению силы тока, напряжения и косинуса или синуса разности фаз (для измерения соответственно активной или реактивной мощности).
    • ПРИМЕРЫ: Ц301, Д8002, Д5071
  • Цифровые НЧ-ваттметры имеют в качестве входных цепей два датчика — по току и по напряжению, подключаемые соответственно последовательно и параллельно нагрузке, датчики могут быть на основе измерительных трансформаторов, термисторов, термопар и другие. Информация с датчиков через АЦП передается на вычислительное устройство, в котором рассчитываются активная и реактивная мощность, далее итоговая информация выводится на цифровое табло и, при необходимости, на внешние устройства (для хранения, печати данных и т. д.).
    • ПРИМЕРЫ: MI 2010А, СР3010, ЩВ02

Ваттметры поглощаемой мощности радиодиапазона

Детекторный СВЧ-ваттметр М3-5С

Ваттметры поглощаемой мощности образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Видовое деление этой подгруппы связано в основном с применением различных типов первичных преобразователей (приемных головок). В серийно выпускаемых ваттметрах используются преобразователи на базе термистора, термопары и пикового детектора; значительно реже, в экспериментальных работах, применяются датчики, основанные на других принципах — пондемоторном, гальваномагнитном и т.д. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за неидеального согласования входного сопротивления приемных головок с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не падающую мощность, а поглощаемую, которая отличается от падающей на величину, равную KP×Pпад, где KP — коэффициент отражения по мощности.

  • Термисторные (болометрические) ваттметры состоят из приемного преобразователя на базе термистора (или болометра) и измерительного моста с источником низкочастотного переменного тока для подогрева термистора. Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. В процессе измерения полная мощность, рассеиваемая на термисторе (при подаче на него одновременно измеряемого сигнала и тока подогрева) и, соответственно, сопротивление термистора поддерживается одинаковым с помощью измерительного моста, котоорый уравновешивается изменением тока подогрева. В первых моделях термисторных ваттметров уравновешивание осуществлялось вручную, в современных ваттметрах уравновешивание автоматическое, показания выводятся в цифровом виде. К недостаткам термисторных ваттметров относится их малый динамический диапазон — максимальная мощность рассеивания — несколько милливатт, это ограничение преодолевается использованием аттенюаторов, делящих мощность, но вносящих при этом дополнительную погрешность.
    • ПРИМЕРЫ: М3-22А, М3-28
  • Калориметрические ваттметры отличаются от термисторных тем, что для поглощения измеряемой мощности используется отдельная нагрузка, от которой тепло передается на термисторный преобразователь через рабочую среду — дистиллированную воду или специальную жидкость. Жидкая среда циркулирует со строго заданной скоростью потока, омывая по очереди входную нагрузку, преобразователь и охлаждающий теплообменник.
    • ПРИМЕРЫ: М3-13, МК3-68, МК3-70
  • Термоэлектрические ваттметры в качестве первичного преобразователя используют термопару (или блок термопар) прямого или косвенного нагрева. При измерении горячий спай термопары нагревается под воздействием подводимой мощности измеряемого сигнала, при этом вырабатывается термо-э.д.с. Измерительная информация в виде сигнала постоянного тока поступает на электронный блок (аналоговый или цифровой), где обрабатывается и поступает на показывающее устройство.
    • ПРИМЕРЫ: М3-51, М3-56, М3-93
  • Ваттметры с пиковым детектором просты в устройстве, в отличие от других видов ваттметров способны измерять не только мощность непрерывного сигнала, но и пиковую мощность радиоимпульсов, однако, из-за низкой точности измерения в настоящее время применяются редко. По принципу действия такой ваттметр представляет собой выпрямительный вольтметр переменного тока, имеющий на входе нагрузку с сопротивлением, равным волновому сопротивлению кабеля, и с отчетным устройством, проградуированным в значениях мощности.
    • ПРИМЕРЫ: М3-3А, М3-5А

Ваттметры проходящей мощности радиодиапазона

В ваттметрах проходящей мощности в качестве первичного преобразователя, обычно используется направленный ответвитель — устройство, позволяющее ответвлять от основного тракта передачи очень небольшую долю энергии. Отведенная часть энергии подается на вторичный преобразователь, например, детекторную или термисторную головку, откуда сигнал измерительной информации подается на функциональный преобразователь и, далее, на показывающее устройство. На относительно низких частотах (в ДВ и СВ диапазонах), использование направленных ответвителей затруднительно, в этом случае в качестве первичных преобразователей можно использовать датчики силы тока и напряжения в линии, измерительная информация с которых далее обрабатывается в функциональном преобразователе (перемножение значений с учетом разности фаз). Датчиками могут служить, например, трансформатор напряжения и трансформатор тока. Такой способ измерения используется обычно в специализированных приборах для контроля мощности, выдаваемой в антенну радиопередатчиком. На сверхвысоких частотах, в волноводных трактах, для измерения проходящей мощности может использоваться пондемоторный метод или датчики, встраиваемые в стенку волновода — термисторные, термоэлектрические, гальваномагнитные.

  • ПРИМЕРЫ: М2-23, М2-32, NAS
Читайте также:  Светодиодные индикаторы выходной мощности

Оптические ваттметры

  • ПРИМЕРЫ: ОМК3-69, ОМ3-65

Наименования и обозначения

  • Видовые наименования
    • Измеритель мощности — другое название ваттметров радио- и оптического диапазонов
    • Киловаттметр — прибор для измерения мощности больших значений (единицы сотни киловатт
    • Милливаттметр — прибор для измерения мощности малых значений (меньше 1 ватта)
    • Варметр — прибор для измерения реактивной мощности
    • Ваттварметр— прибор, позволяющий измерять активную и реактивную мощность
  • Для обозначения типов электроизмерительных (низкочастотных) ваттметров традиционно используется отраслевая система обозначений, в которой приборы маркируются в зависимости от системы (основного принципа действия)
    • Дхх — приборы электродинамической системы
    • Цхх — приборы выпрямительной системы
    • Фхх, Щхх — приборы электронной системы
    • Нхх — самопишущие приборы
  • Ваттметры радио- и оптического диапазонов маркируются по ГОСТ 15094
    • М1-хх — эталонные ваттметры высокой точности
    • М2-хх, РМ2-хх — ваттметры проходящей мощности (радиодиапазона)
    • М3-хх, РМ3-хх — ваттметры поглощаемой мощности (радиодиапазона)
    • М5-хх — преобразователи приемные (головки) ваттметров
    • ОМ3-хх — оптические ваттметры поглощаемой мощности

Основные нормируемые характеристики

  • Диапазон рабочих частот
  • Диапазон измерений
  • Допустимая погрешность измерения (для эл.-изм. — класс точности)
  • Допустимый КСВн — для ваттметров радиодиапазона

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т.; Под ред. В. С. Насонова — М.:Сов. радио, 1979
  • Мейзда Ф. Электронные измерительные приборы и методы измерений — М.: Мир, 1990
  • Справочник по радиоэлектронным устройствам: В 2-х т.; Под ред. Д. П. Линде — М.: Энергия,1978

Нормативно-техническая документация

  • ГОСТ 8476-78 Ваттметры и варметры. Общие технические условия
  • ГОСТ 8476-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 3. Особые требования к ваттметрам и варметрам
  • ГОСТ 8.392-80 Государственная система обеспечения единства измерений. Ваттметры СВЧ малой мощности и их первичные измерительные преобразователи диапазона частот 0,03-78, 33 ГГц. Методы и средства поверки
  • ГОСТ 8.397-80 Государственная система обеспечения единства измерений. Ваттметры волноводные импульсные малой мощности в диапазоне частот 5,64-37,5 ГГц. Методы и средства поверки
  • ГОСТ 8.497-83 Государственная система обеспечения единства измерений. Амперметры, вольтметры, ваттметры, варметры. Методика поверки
  • ГОСТ 8.569-2000 Государственная система обеспечения единства измерений. Ваттметры СВЧ малой мощности диапазона частот 0,02-178,6 ГГц. Методика поверки и калибровки
  • IEC 61315(1995) Калибрование измерителей мощности (ваттметров) волоконно-оптических источников излучения

Ссылки

  • Измерение вносимых потерь с помощью ваттметров
  • УКВ – ваттметр с расширенными возможностями
  • ВЫСОКОЧАСТОТНЫЙ ВАТТМЕТР И ГЕНЕРАТОР ШУМА
  • Измерение параметров лазеров
  • Измерение малых и сверхмалых мощностей оптического излучения инфракрасного диапазона

См. также

  • Мощность (физика)
  • Электрическая мощность
  • Радиоизмерительные приборы
  • Электроизмерительные приборы
  • Измерительный прибор
  • Коэффициент отражения (в радиотехнике)

Wikimedia Foundation . 2010 .

Смотреть что такое «Измеритель мощности» в других словарях:

измеритель мощности — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN power meter … Справочник технического переводчика

измеритель мощности — galios matuoklis statusas T sritis fizika atitikmenys: angl. power measuring instrument; power meter vok. Leistungsmeßgerät, n; Leistungsmesser, m rus. измеритель мощности, m pranc. mesureur de puissance, m; puissancemètre, m … Fizikos terminų žodynas

измеритель мощности дозы — Прибор, предназначенный для измерения мощности дозы. [РМГ 78 2005] измеритель мощности дозы Прибор для измерения мощности дозы рентгеновского и гамма излучения [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля.… … Справочник технического переводчика

Измеритель мощности дозы — прибор для измерения мощности экспозиционной дозы ионизирующего излучения. Ранее назывался рентгенометром. Основной прибор радиационной разведки EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

измеритель мощности экспозиционной дозы — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN exposure rate meter … Справочник технического переводчика

измеритель мощности дозы — dozės galios matuoklis statusas T sritis Standartizacija ir metrologija apibrėžtis Įtaisas, aparatas ar sistema dydžiui, susijusiam su sugertosios arba lygiavertės dozės galia, išmatuoti ar įvertinti. atitikmenys: angl. dose rate meter vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

измеритель мощности дозы — dozės galios matuoklis statusas T sritis fizika atitikmenys: angl. dose rate meter vok. Dosisleistungsmesser, m rus. измеритель мощности дозы, m; устройство измерения мощности дозы, n pranc. mesureur de taux de dose, m … Fizikos terminų žodynas

измеритель мощности дозы — 8.4 измеритель мощности дозы : Прибор, предназначенный для измерения мощности дозы. Источник: РМГ 78 2005: Государственная система обеспечения единства и … Словарь-справочник терминов нормативно-технической документации

измеритель мощности дозы — dozės galios matuoklis statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Prietaisas, kuris gali nustatyti radioaktyviosios taršos (įskaitant vandens) lygį arba kontroliuoti specialiojo švarinimo priemonių veiksmingumą; nustatyti… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

измеритель мощности дозы — rus измеритель (м) мощности дозы eng dose rate meter fra débimètre (m) de dose deu Dosisleistungsmesser (m) spa debímetro (m) de dosis … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

Источник



Измерители мощности. Измерительные приборы и инструменты

Каким прибором измеряют мощность? Вопрос достаточно актуальный, так как в настоящее время электрическая сеть имеется повсюду. Без электричества не работает практически ничего. Неудивительно, что это привело к огромной популярности приборов, измеряющих показатели таких сетей. Важный факт — измерение мощности можно провести только в ваттах. Однако в некоторых случаях возникает потребность перевода ватта в киловатт. Чаще всего это делается для удобства расчетов.

Общее описание электрических сетей

Мощность — это один из трех основных параметров, который характеризует электрическую сеть. Данный параметр отражает то количество работы, которую выполняет сила тока за одну единицу времени. Здесь важно понимать, что общая мощность всех включенных приборов в сеть не должна превышать ту, которая подается поставщиком. Если это произойдет, то возможны негативные последствия, начиная с выхода из строя оборудования и заканчивая коротким замыканием и последующим пожаром. Для того чтобы избежать таких неприятностей, были изобретены измерители мощности, которые называются ваттметрами.

Читайте также:  Формула мощности усилителя звука

Тут важно понимать, что в цепи постоянного тока измерить этот параметр можно и без использования данного прибора. Для этого используют умножение. Перемножаются значения напряжения и силы тока в цепи. Однако обойтись тем же самым методом в цепи переменного тока не получится. Именно для таких сетей и были изобретены измерительные приборы и инструменты.

Использование аппаратуры

Основными источниками, использующими эти агрегаты, стали мастерские, занимающиеся ремонтом электрических приборов. Активно используют ваттметры и в электроэнергетической промышленности, а также машиностроении. Еще одной довольно распространенной моделью стали бытовые приборы. Основными покупателями таких изделий стали любители электроники, владельцы компьютеров или просто люди, желающие экономить на электроэнергии.

Один небольшой факт. В некоторых случаях приходится проводить преобразование ватт в киловатты. Чаще всего это делается в промышленных отраслях, где мощность настолько велика, что, если измерять ее в Вт, то значения будут слишком велики. При переводе единиц измерений есть такое правило: 1000 ВТ — это 1 кВт.

Чаще всего устройства применяются для таких целей, как:

  • определение мощности отдельного агрегата;
  • тестирование всей электрической цепи или ее отдельных частей;
  • контроль работоспособности устройств;
  • учет потребления электроэнергии всеми подключенными устройствами.

Краткое описание типов приборов

Здесь важно начать с того, что, прежде чем начать измерять мощность, обычно измеряют силу тока и напряжение. Основываясь на выбранном способе измерения, последующем преобразовании и выводе полученных данных, различают такие виды измерительных приборов и инструментов, как цифровые и аналоговые.

Аналоговые типы приборов отличаются тем, что они имеют полукруглую шкалу, а также движущуюся стрелку. Они также разделяются на две более мелких группы — самопишущие и показывающие. Эти приборы отражают мощность лишь активного участка цепи. Измерение прибор ведет в ваттах (Вт).

Цифровые измерители мощности (ваттметры) могут использовать для измерения и активной и реактивной мощности. К тому же у этого аппарата функционал намного шире, так как на его табло выводится показатель не только мощности, а также силы тока, напряжения и расхода энергии во времени. Еще одно преимущество заключается в том, что вывод всех значений можно производить удаленно, то есть на компьютер оператора.

Суть работы аналоговых приборов

Если говорить об устройствах аналогового типа для измерения мощности, то наиболее точными и часто используемыми стали приспособления электродинамической системы.

Принцип действия этого измерителя мощности основывается на работе двух катушек. Одна из них характеризуется тем, что она не двигается, ее сопротивление мало, как и число витков. А вот обмотка, наоборот, довольно толстая. Второй же экземпляр противоположен первому. То есть катушка движется, толщина обмотки низкая, а вот число витков довольно велико, из-за чего сопротивление также повышено. Подключение этого прибора осуществляется параллельно нагрузке. Для того чтобы избежать возникновения короткого замыкания между внутренними катушками устройства, прибор снабжается добавочным сопротивлением.

Суть работы цифровых приспособлений

Принцип действия этих измерителей мощности сложнее, чем у предыдущего типа. Причиной тому стало то, что мощность измеряется не напрямую. Основа работы устройства лежит в том, что сначала производятся предварительные измерения силы тока и напряжения. Для того чтобы их провести, нужно последовательно нагрузке подключить датчик тока, а параллельно — датчик напряжения. Выполнены эти агрегаты могут быть на базе термисторов или измерительных трансформаторов.

Мгновенные значения, полученные посредством аналого-цифрового преобразователя, передаются на микропроцессор, имеющийся у измерителя. В этом моменте производятся необходимые расчеты, благодаря которым можно получить значение активной и реактивной мощности. Итоговые результаты всех измерений выдаются на дисплей этого прибора, а также на дисплей тех устройств, которые подключены к нему. Оптическая мощность не измеряется этими видами приборов.

Бытовые приспособления

На сегодняшний день довольно распространенным и удобным прибором в быту стал ваттметр, при помощи которого можно измерить расход электрической энергии в доме. Данная модель является портативной версией устройства, при помощи которой измеряется мощность на отдельном участке. Благодаря этому становится возможным посчитать материальные расходы, которые уйдут на электроэнергию, если оставить работать сеть с такими же параметрами.

Данное приспособление довольно удобно, если необходимо распланировать расход средств, а также поможет провести оптимизацию некоторых участков домашней цепи.

Бытовые ваттметры

Этот агрегат относится к цифровой группе приборов. По своему внешнему виду он сильно напоминает адаптер или же переходник, который обладает дисплеем индикаторного типа. Кроме того, на корпусе расположено несколько кнопок, управляющих работой устройства. Основное предназначение этого прибора — регистрация и вывод на экран результатов потребления мощности любым бытовым прибором, который подключается к сети через него. Таких параметров довольно много, и это не только потребляемая мощность. Если ввести конкретный тариф, то устройство может даже показать количество материальных средств, которые будут уплачены за работу именно этого прибора. Оно может также фиксировать мощность излучения.

Функции прибора

Кроме обычных показателей этот прибор способен также зафиксировать такие значения, как пиковая мощность и пиковое значение силы тока. Кроме этого имеется и несколько других функций. Устройство показывает также текущее время, может работать как обычные часы реального времени. Еще одна возможность использования аппарата — звуковая сигнализация, которая сработает, если прибор начнет потреблять большее количество мощности, чем пользователь задаст вручную.

Читайте также:  Какие режимы существуют для элементов усилителя мощности

Кнопки, имеющиеся на приборе, могут быть использованы для того, чтобы вручную настраивать функции работы устройства. Имеется возможность выставить максимально допустимую мощность излучения, выставить стоимость киловатта за час и т.д.

В плане эксплуатации этот прибор очень прост. Для его работы необходимо подключить его к сети, то есть воткнуть в розетку. Далее необходимо подключить вилку исследуемого прибора к этому бытовому ваттметру. Отображение всех параметров подключенного устройства начнется автоматически.

Из основных параметров этого прибора можно выделить то, что к нему можно подключить практически любую бытовую технику. Общая максимальная мощность приборов не должна превышать показателя в 3600 Вт. Также нельзя превышать показатель силы тока в 16 А.

Источник

Тема 2.4 Приборы и методы измерения мощности и энергии

Амперметр был разработан так, чтобы внутреннее сопротивление было как можно меньше. Поэтому, если вы включите не последовательно, а параллельно нагрузке обстоятельства могут быть непредсказуемые. Именно в последствии малого сопротивления внутри через амперметр потечет большой ток, что приведет к тому, что прибор сгорит или погорят провода.

Тема 2.3 Приборы и методы измерения тока

Методы измерения токов. Устройство, принцип действия, технические характеристики, разновидности, область применения основных типов амперметров, токоизмерительных клещей. Расширение пределов измерения с помощью трансформаторов тока и шунтов. Применение комбинированных приборов для измерения тока. Выбор прибора для измерения тока, включение в цепь, измерение, обработка результата измерения.

При изучение методов измерения тока необходимо вспомнить закон Ома. Перед измерением тока (напряжения) нужно иметь представление о его частоте, форме, ожидаемом значении, требуемой точности измерения и сопротивлении цепи ,в которой производится измерение. Эти предварительные сведения позволятвыбрать наиболее подходящий метод измерения и измерительный прибор. Для измерения тока и напряжения применяют метод непосредственной оценки и метод сравнения. Для измерения тока в какой-либо цепи последовательно в цепь включают амперметр.

Амперметр – измерительный прибор для определения силы постоянного и переменного тока в электрической цепи. Показания амперметра всецело зависят от величины протекающего через него тока, в связи, с чем сопротивление амперметра по сравнению с сопротивлением нагрузки должно быть как можно меньшим. По своим конструктивным особенностям амперметры подразделяются на магнитоэлектрические, электромагнитные, термоэлектрические, электродинамические, ферродинамические и выпрямительные.

Магнитоэлектрические амперметры служат для измерения силы тока малой величины в цепях постоянного тока. Они состоят из магнитоэлектрического измерительного механизма и шкалы с нанесенными делениями, соответствующими различным значениям измеряемого тока.

Электромагнитные амперметры предназначены для измерения силы протекающего тока в цепях постоянного и переменного тока. Чаще всего используются для измерения силы в цепях переменного тока промышленной частоты (50 Гц). Состоят из измерительного механизма, шкала которого размечена в единицах силы тока, протекающего по катушке прибора. Для изготовления катушки можно использовать провод большого сечения и, следовательно, измерять ток большой величины (свыше 200 А).

Термоэлектрические амперметры применяются для измерения в цепях переменного тока высокой частоты. Они состоят из магнитоэлектрического прибора с контактным или бесконтактным преобразователем, который представляет собой проводник (нагреватель), к которому приварена термопара (она может находиться на некотором расстоянии от нагревателя и не иметь с ним непосредственного контакта). Ток, проходя по нагревателю, вызывает его нагрев (за счет активных потерь), который регистрируется термопарой. Возникающее термическое излучение воздействует на рамку магнитоэлектрического измерителя тока, которая отклоняется на угол, пропорциональный силе тока в цепи.

Электродинамические амперметры служат для измерения силы тока в цепях постоянного и переменного токов повышенной (до 200 Гц) частот. Приборы очень чувствительны к перегрузкам и внешним магнитным полям. Применяются в качестве контрольных приборов для проверки рабочих измерителей силы тока. Состоят из электродинамического измерительного механизма, катушки которого в зависимости от величины максимально измеряемого тока соединены последовательно или параллельно, и градуированной шкалы. При измерении токов малой силы катушки соединяются последовательно, а большой – параллельно.

Ферродинамические амперметры прочны и надежны по конструкции, малочувствительны к воздействию внешних магнитных полей. Они состоят из ферродинамического измерительного аппарата и применяются главным образом в системах автоматических контроллеров в качестве самопишущих амперметров.

Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но, часто, возникают ситуации, когда необходимо выполнить измерение некоторой величины, значение которой больше пределов измерения прибора. Тем не менее, всегда оказывается возможным расширить пределы измерения данным прибором. Для этого параллельно амперметру присоединяют проводник, по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения. Такое сопротивление называется шунтирующим. Результатом подобных действий станет то, что если амперметром, рассчитанным, например, на силу тока до 1 А, необходимо выполнить измерение тока в 10 раз больше, то сопротивление шунта должно быть в 9 раз меньше сопротивления амперметра. Разумеется, при этом цена градуировки увеличивается в 10 раз, а точность во столько же раз уменьшается.

Для расширения предела измерения амперметра ( в k раз) в цепях постоянного тока служат шунты-резисторы, включаемые параллельно амперметру.

Шкалы амперметров обычно градуируют непосредственно в единицах силы тока:

амперах, миллиамперах или микроамперах. Нередко в лабораторной практике

применяет многопредельные амперметры. Внутри корпуса таких приборов размещают несколько различных шунтов, которые подключаются параллельно индикатору с помощью переключателя пределов измерений. На лицевой панели многопредельных приборов указывают максимальные значения силы тока, которые могут быть измерены при том или ином положении переключателя пределов измерений. Цена деления шкалы (если у прибора имеется единственная шкала) будет разной для каждого предела измерений. Часто многопредельные приборы имеют несколько шкал, каждая из которых соответствует определенному пределу измерений.

Источник

Adblock
detector