Что называют напряжением электрического поля

Электрическое поле. Напряженность. Принцип суперпозиции

Подробнее
Подробнее
Подробнее

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Напряженность электрического поля — это отношение вектора силы \(\vec\) , с которой поле действует на пробный заряд \(q\) , к самому пробному заряду с учетом его знака.

Единицы измерения: \(\displaystyle [\text<В>/\text<м>]\) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда \(q\) по поверхности площади \(S\) поверхностная плотность заряда \(\displaystyle \sigma\) постоянна и равна

Напряженность электростатического поля точечного заряда Q в точке A, удаленной на расстояние \(r\) от заряда \(Q\) , определяется формулой:

Принцип суперпозиции полей

Пусть заряды \(\displaystyle q_1, q_2, q_3. , q_n\) по отдельности создают в данной точке поля \(\vec_1\) , \(\vec_2\) . \(\vec_n\) . Тогда система этих зарядов создает в данной точке поле \(\vec\) , равное векторной сумме напряженностей полей отдельных зарядов.

Разберемся, что такое принцип суперпозиции на примере электрического поля. Благодаря ему, можно найти напряженность двух точечных зарядов, в каждой точке поля \(А\) . Рассмотрим рисунок:

здесь видно, что для нахождения направления результирующего вектора \(\vec\) , нужно сложить вектора \(\vec_1\) и \(\vec_2\) по правилу параллелограмма. Это и есть принцип суперпозиции.

Поток вектора напряженности электростатического поля \(\vec\) через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную \(\varepsilon_0\) .

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Проведём сферическую поверхность радиусом \(r>R\) . Пусть её заряд равен \(q\) . По теореме Гаусса:

Заряженный шар

Рассмотрим электрическое поле равномерно заряженного шара. Напомним, что объём шара равен \(V=\dfrac<4><3>\pi R^3\) . Тогда его заряд \(q=\dfrac<4><3>\pi R^3\rho\) . Напряжённость поля вне шара \(r>R\) можно найти так же, как и вне сферы:

Для нахождения напряжённости внутри шара применим теорему Гаусса для сферической поверхности радиусом \(r . По теореме Гаусса:

Источник

Напряженность электрического поля

Напряженность электрического поля в данной точке пространства — это физическая величина равная отношению силы действующей на пробный положительный заряд, помещённый в данную точку поля, к величине этого заряда. Напряжённость поля является векторной величиной.

напряженность электрического поля формула E = F/Q

E = F/Q
Где:
E — Напряжённость электрического поля
F — Сила, действующая на положительный точечный заряд
Q — Величина пробного заряда

Сила (F) измеряется в ньютонах (Н), заряд (Q) измеряется в кулонах (Кл), а напряжённость электрического поля (E) измеряется:

  • либо в ньютонах на кулон (Н/Кл),
  • либо в вольтах на метр (В/м).

Пример:

Какую силу (F) оказывает электрическое поле (E) равное 7,2 × 10^5 Н/Кл на точечный заряд −0,250 мкКл (микрокулонов)?

Формула: E = F/Q или F = Q × E

Q = −0,250 мкКл = − 0,250 ×10^(−6) Кл (отрицательное)

F = (0,250 ×10^(−6) Кл) × (7,2 × 10^5 Н/Кл) = 0,180 Н

Сила направлена противоположно направлению поля, т.к. Q является отрицательным.

Что такое электрическое поле?

Электрический заряд создаёт вокруг себя электрическое поле, оно действует с некой силой и на другие находящиеся вокруг него заряды. Электрическое поле может возникнуть и в веществе, и в вакууме, т.е. ему не нужна какая-либо специфическая среда.

Электростатическое поле можно изобразить в виде силовых линий (или линий напряжённости). Силовая линия — это воображаемая линия, проведённая таким образом, что касательная к ней в каждой точке поля указывает направление вектора напряжённости электрического поля в этой точке.

силовые линии или линии напряжённости

Изображение силовых линий

Что такое напряженность поля точечного заряда?

Напряженность поля точечного заряда определяется формулой:

E = (k × |Q|)/r²

k = 9×(10^9) (в единицах Н.м²/Кл²)

Q – заряд, создающий поле,

r – расстояние точки А от заряда Q

Пример:

Вычислите силу и направление электрического поля (E) от точечного заряда 2,00 нКл (нанокулонов) на расстоянии 5 мм от заряда.

Формула: E = (k × |Q|)/r²

Помним, что k = 9×(10^9) (в единицах Н.м²/ Кл²)

E = (9×(10^9) Н.м²/ Кл²) × (2 × 10^(−9) Кл) / ((5 × 10^(−3) м)²) ≈ 7,19 × 10^5 Н/Кл

Вектор напряжённости

Векторы напряженности поля точечного заряда

Векторы напряженности поля точечного заряда можно изобразить таким образом.

Вектор напряжённости в данной точке направлен вдоль прямой, соединяющей точку с зарядом, и важно учитывать, что:

    направление зависит от q: от заряда при q > 0 и к заряду при q

Источник

Электрическое поле: основные понятия

Электрические заряды не воздействуют непосредственно друг на друга. Согласно современным представлениям, заряженные тела взаимодействуют посредством силового поля, которое создают вокруг себя.

Это силовое поле воздействует на заряженные тела с некоторой силой. Исследовать электрическое поле, которое окружает тело, несущее заряд, можно с помощью пробного заряда, величина которого незначительна. Особенностью электрического поля точечного заряда является тот факт, что оно не производит заметного перераспределения исследуемых зарядов.

Понятие напряженности электрического поля

Напряженность электрического поля – это силовая характеристика, которая используется для количественного определения электрического поля.

Второе значение термина – физическая величина, равная отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда.

Напряженность электрического поля можно задать формулой:

Напряжение электрического поля является векторной величиной. Направление вектора E → совпадает с направлением силы, которая воздействует на положительный пробный заряд в пространстве.

Напряженность электрического поля

Какое поле называют электростатическим?

Электростатическое поле – это электрическое поле, которое окружает неподвижные и не меняющиеся со временем заряды.

Очень часто в контексте темы электростатическое поле будет именоваться электрическим для краткости.

Электрическое поле может быть создано сразу несколькими заряженными телами. Такое поле также можно исследовать с помощью пробного заряда. В этом случае мы будем оценивать результирующую силу, которая будет равна геометрической сумме сил каждого из заряженных тем в отдельности.

Напряженность электрического поля, которая создается в определенной точке пространства системой зарядов, будет равна векторной сумме напряженностей электрических полей:

Электрическое поле подчиняется принципу суперпозиции.

Согласно формуле, напряженность электростатического поля, которое создается точечным зарядом Q на расстоянии r от него, в соответствии с законом Кулона, будет равна по модулю:

E = 1 4 πε 0 · Q r 2 .

Это поле называется кулоновским.

В кулоновском поле направление вектора E ⇀ зависит от знака заряда Q : если Q > 0 , то вектор E ⇀ направлен по радиусу от заряда, если Q 0 , то вектор E ⇀ направлен к заряду.

Обратимся к иллюстрации. На рисунке для большей наглядности мы используем силовые линии электрического поля. Они проходят таким образом, чтобы направление вектора E ⇀ в каждой из точек пространства совпадало с направлением касательной к силовой линии. Густота силовых линий соответствует модулю вектора напряженности поля.

Рисунок 1 . 2 . 1 . Силовые линии электрического поля.

Мы можем использовать как положительные, так и отрицательные точечные заряды. Оба эти случая мы изобразили на рисунке. Электростатическое поле, которое создается системой зарядов, мы можем представить как суперпозицию кулоновских полей точечных зарядов. В связи с этим мы можем рассматривать поля точечных зарядов как элементарные структурные единицы любого электрического поля.

Рисунок 1 . 2 . 2 . Силовые линии кулоновских полей.

Кулоновское поле точечного заряда Q удобно записать в векторной форме. Для этого нужно провести радиус-вектор r → от заряда Q к точке наблюдения. Тогда при Q > 0 вектор E → параллелен r → , а при Q 0 вектор E → антипараллелен r → .

Следовательно можно записать:

E → = 1 4 π ε 0 · Q r 3 r → ,

где r – модуль радиус-вектора r → .

По заданному распределению зарядов можно определить электрическое поле E → . Такие задачи часто встречаются в таком разделе физики как электростатика. Рассмотрим пример такой задачи.

Предположим, что нам нужно найти электрическое поле длинной однородно заряженной нити на расстоянии R от нее. Для большей наглядности мы привели схему на рисунке ниже.

Рисунок 1 . 2 . 3 . Электрическое поле заряженной нити.

Поле в точке наблюдения P может быть представлено в виде суперпозиции кулоновских полей, создаваемых малыми элементами Δ x нити, с зарядом τ Δ x , где τ – заряд нити на единицу длины. Задача сводится к суммированию (интегрированию) элементарных полей ∆ E → . Результирующее поле оказывается равным

Вектор E → везде направлен по радиусу R → . Это следует из симметрии задачи.

Даже в таком простом примере вычисления могут быть достаточно громоздкими. Упростить математические расчеты позволяет теорема Гаусса, которая выражает фундаментальное свойство электрического поля.

Напряженность электрического поля

Рисунок 1 . 2 . 4 . Модель электрического поля точечных зарядов.

Напряженность электрического поля

Рисунок 1 . 2 . 5 . Модель движения заряда в электрическом поле.

Понятие о диполях

Электрический диполь – это система из двух одинаковых по модулю зарядов, которые отличаются знаками и расположены на некотором расстоянии друг от друга.

Эта система может послужить нам хорошим примером применения принципа суперпозиции полей, а также электрической моделью многих молекул.

Рисунок 1 . 2 . 6 . Силовые линии поля электрического диполя E → = E 1 → + E 2 → .

Дипольный момент p → является одной из наиболее важных характеристик электрического диполя:

где l → – вектор, направленный от отрицательного заряда к положительному, модуль l → = l .

Электрическим дипольным моментом обладает, например, нейтральная молекула воды ( H 2 O ) , так как центры двух атомов водорода располагаются не на одной прямой с центром атома кислорода, а под углом 105 ° . Дипольный момент молекулы воды p = 6 , 2 · 10 – 30 К л · м .

Рисунок 1 . 2 . 7 . Дипольный момент молекулы воды.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector