Чему равно напряжение идеального диода

Вольт-амперная характеристика (ВАХ) полупроводникового диода

Что такое идеальный диод?

Основная задача обычного выпрямительного диода – проводить электрический ток в одном направлении, и не пропускать его в обратном. Следовательно, идеальный диод должен быть очень хорошим проводником с нулевым сопротивлением при прямом подключении напряжения (плюс — к аноду, минус — к катоду), и абсолютным изолятором с бесконечным сопротивлением при обратном.

Вот так это выглядит на графике:

Такая модель диода используется в случаях, когда важна только логическая функция прибора. Например, в цифровой электронике.

ВАХ реального полупроводникового диода

Однако на практике, в силу своей полупроводниковой структуры, настоящий диод обладает рядом недостатков и ограничений по сравнению с идеальным диодом. Это можно увидеть на графике, приведенном ниже.

Vϒ(гамма) — напряжение порога проводимости

При прямом включении напряжение на диоде должно достигнуть определенного порогового значения — Vϒ . Это напряжение, при котором PN-переход в полупроводнике открывается достаточно, чтобы диод начал хорошо проводить ток. До того как напряжение между анодом и катодом достигнет этого значения, диод является очень плохим проводником. Vϒ у кремниевых приборов примерно 0.7V, у германиевых – около 0.3V.

ID_MAX — максимальный ток через диод при прямом включении

При прямом включении полупроводниковый диод способен выдержать ограниченную силу тока ID_MAX . Когда ток через прибор превышает этот предел, диод перегревается. В результате разрушается кристаллическая структура полупроводника, и прибор становится непригодным. Величина данной силы тока сильно колеблется в зависимости от разных типов диодов и их производителей.

IOP – обратный ток утечки

При обратном включении диод не является абсолютным изолятором и имеет конечное сопротивление, хоть и очень высокое. Это служит причиной образования тока утечки или обратного тока IOP . Ток утечки у германиевых приборов достигает до 200 µА, у кремниевых до нескольких десятков nА. Самые последние высококачественные кремниевые диоды с предельно низким обратным током имеют этот показатель около 0.5 nA.

PIV(Peak Inverse Voltage) — Напряжение пробоя

При обратном включении диод способен выдерживать ограниченное напряжение – напряжение пробоя PIV . Если внешняя разность потенциалов превышает это значение, диод резко понижает свое сопротивление и превращается в проводник. Такой эффект нежелательный, так как диод должен быть хорошим проводником только при прямом включении. Величина напряжения пробоя колеблется в зависимости от разных типов диодов и их производителей.

Паразитическая емкость PN-перехода

Даже если на диод подать напряжение значительно выше Vϒ, он не начнет мгновенно проводить ток. Причиной этому является паразитическая емкость PN перехода, на наполнение которой требуется определенное время. Это сказывается на частотных характеристиках прибора.

Приближенные модели диодов

В большинстве случаев, для расчетов в электронных схемах, не используют точную модель диода со всеми его характеристиками. Нелинейность этой функции слишком усложняет задачу. Предпочитают использовать, так называемые, приближенные модели.

Приближенная модель диода «идеальный диод + Vϒ»

Самой простой и часто используемой является приближенная модель первого уровня. Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости Vϒ.

Приближенная модель диода «идеальный диод + Vϒ + rD»

Иногда используют чуть более сложную и точную приближенную модель второго уровня. В этом случае добавляют к модели первого уровня внутреннее сопротивление диода, преобразовав его функцию из экспоненты в линейную.

Источник

2.2.1. «Идеальный» диод

Представление реального диода в виде «идеального диода» равносильно модели идеального вентиля: полностью открыт (прямое включение), полностью закрыт (обратное включение). В закрытом положении ток равен нулю при любом отрицательном напряжении на диоде, в открытом положении напряжение равно нулю при любом токе. Таким образом дифференциальные сопротивления в закрытом и открытом состоянии равны соответственно бесконечности и нулю. На рис.2.2. представлены ВАХ «идеального диода»(жирно) и его схемы замещения в открытом и закрытом состяниях.

Такое представление реального диода часто удобно использовать для анализа схем выпрямителей с большими значениями амплитуд выпрямляемых напряжений, когда нелинейностью начального участка прямой ветви ВАХ и наличием небольшого обратного тока можно пренебречь.

Рассмотрим пример работы простейшей выпрямительной схемы с «идеальным диодом» при гармоническом входном напряжении и нулевом постоянном смещении (Рис.2.3). Величина сопротивления нагрузки R , с которого снимается выпрямленное напряжение, значительно больше дифференциального сопротивления в открытом состоянии реального диода, и меньше дифференциального сопротивления закрытого перехода.

Пусть , причем амплитуда Еm такова, что можно использовать модель «идеального диода». При положительных значениях входного напряжения диод обладает нулевым дифференциальным сопротивлением, и ток в цепи равен

а при отрицательных значениях е(t) ток равен нулю. Осциллограммы тока и напряжений в схеме показаны на рис.2.4.

Поскольку напряжение на нагрузке R несинусоидально, его можно разложить в ряд Фурье по гармоникам частоты входного напряжения. Выпрямленным напряжением является постоянная составляющая напряжения uR (t) :

Из рисунка 2.4 видно, что напряжение на нагрузке отнюдь не постоянно, а пульсирует относительно постоянного напряжения UR,0.

При наличии дополнительного постоянного напряжения Есм (смещение) изменится уровень положительных и отрицательных напряжений на диоде, т.к. входное напряжение выпрямителя будет равно

На рис.2.5 показаны осциллограммы тока и напряжений для отрицательного смещения. На рисунке положительные уровни сигналов отмечены штриховкой.

Как видим, обратное напряжение на диоде здесь увеличилось на величину смещения, а выпрямленное напряжение уменьшилось не только за счет уменьшения амплитуды тока, но и за счет уменьшения длительности импульсов тока.

В данной схеме выпрямителя выходное напряжение не постоянно, а имеет форму усеченных косинусоидальных импульсов, что свидетельствует о наличии в спектре тока и напряжения гармоник частоты выпрямляемого напряжения. Для уменьшения амплитуды гармоник на нагрузке выпрямителя ставят специальные фильтры нижних частот. Простейшим вариантом такого фильтра является параллельная цепочка RC вместо одного сопротивления R (см.рис.2.6).

Величину емкости определяют исходя из заданного коэффициента подавления амплитуды первой гармоники, как наибольшей в спектре тока или из неравенства:

При выполнении этого неравенства постоянная составляющая тока протекает через резистор R , а все переменные составляющие – через конденсатор С , так как его сопротивление переменным токам будет значительно меньше сопротивления резистора.

Можно рассмотреть работу выпрямителя и во временной области. Осциллограммы токов и напряжений в установившемся режиме показаны на рис. 2.7, причем входное и выходное напряжения здесь совмещены на одном графике.

Напряжение на диоде определяется разностью входного и выходного напряжений:

Напряжение же на выходе можно представить в виде процессов заряда и разряда конденсатора С . При положительных напряжениях на диоде сопротивление последнего равно нулю (или мало в реальном диоде в прямом режиме) конденсатор быстро (практически мгновенно) заряжается до напряжения, примерно равному е(t1); в следующие моменты времени напряжение на диоде становится отрицательным, диод закрывается, и емкость медленно разряжается через сопротивление R достаточно большой величины. При правильном выборе С и R постоянная времени разряда емкости значительно больше постоянной времени заряда, так что при разряде напряжение на выходе почти не меняется. В установившемся режиме выходное напряжение колеблется около некоторого среднего значения Uвых,0 , близком по величине к амплитуде входного напряжения. Пульсации выпрямленного напряжения здесь значительно меньшие, чем в схеме без конденсатора.

Источник

Чему равно напряжение идеального диода

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

Вот это и есть тот самый PN-переход

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Мой генератор частоты выглядит вот так.

Осциллограмму будем снимать с помощью цифрового осциллографа

Генератор выдает переменное синусоидальное напряжение.

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение U обр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток I обр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток I пр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота F d , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (I min, I max) . Измеряется в Амперах.

Источник

Поделиться с друзьями
Электрика и электроника
Adblock
detector